Clinical Policy Title: Noninvasive tests for rejection surveillance after heart transplantation

Clinical Policy Number: 04.01.04

Effective Date: January 1, 2016
Initial Review Date: September 16, 2015
Most Recent Review Date: September 21, 2017
Next Review Date: September 2018

Policy contains:
- AlloMap Dx.
- Heartsbreath.
- Mycophenolic acid.
- Echocardiograph.

Related policies:
None

ABOUT THIS POLICY: AmeriHealth Caritas Pennsylvania has developed clinical policies to assist with making coverage determinations. AmeriHealth Caritas Pennsylvania’s clinical policies are based on guidelines from established industry sources, such as the Centers for Medicare & Medicaid Services (CMS), state regulatory agencies, the American Medical Association (AMA), medical specialty professional societies, and peer-reviewed professional literature. These clinical policies along with other sources, such as plan benefits and state and federal laws and regulatory requirements, including any state- or plan-specific definition of “medically necessary,” and the specific facts of the particular situation are considered by AmeriHealth Caritas Pennsylvania when making coverage determinations. In the event of conflict between this clinical policy and plan benefits and/or state or federal laws and/or regulatory requirements, the plan benefits and/or state and federal laws and/or regulatory requirements shall control. AmeriHealth Caritas Pennsylvania’s clinical policies are for informational purposes only and not intended as medical advice or to direct treatment. Physicians and other health care providers are solely responsible for the treatment decisions for their patients. AmeriHealth Caritas Pennsylvania’s clinical policies are reflective of evidence-based medicine at the time of review. As medical science evolves, AmeriHealth Caritas Pennsylvania will update its clinical policies as necessary. AmeriHealth Caritas Pennsylvania’s clinical policies are not guarantees of payment.

Coverage policy

AmeriHealth Caritas Pennsylvania considers the use of non-invasive tests for rejection surveillance after heart transplantation to be clinically proven and, therefore, medically necessary when the following criteria are met (Chruscinski 2016, Daly 2015, Lipschultz 2014, Andalusian Agency for Health Technology Assessment 2012, Blue Cross Blue Shield Technology Evaluation Center 2011):

- Endomyocardial biopsy is not technically feasible (e.g., anatomic conditions precluding catheterization and biopsy).
- The patient’s physical condition creates excessive or life-threatening risk for endomyocardial biopsy to be attempted.

Limitations:

All other uses of non-invasive tests for rejection surveillance after heart transplantation are considered investigational and, therefore, not medically necessary.
Alternative covered services:

Primary care and specialty physician (including surgical) evaluation and management

Background

Heart transplantation is a life-saving procedure for people with end-stage heart failure. The first transplant was performed in 1967. While post-transplant care and antirejection drugs have improved long-term outcomes to a median survival of 10 years, rejection within the first year remains a significant problem to patient survival and to transplanted heart function. Accordingly, transplant recipients are routinely monitored for rejection by endomyocardial biopsy, an invasive and uncomfortable procedure that is not without risk. A number of noninvasive tests, including the AlloMap genetic test, the Heartsbreath test, mycophenolic acid, and echocardiographic indices are under investigation. Surveillance schedules are transplant center-specific, but generally, most intense in the first six months to one year and then decreasing in intensity. Patients with transplanted hearts receive immunosuppressive drugs for life.

Genetic testing or gene expression testing includes a variety of laboratory tests (analysis of deoxyribonucleic acid [DNA], ribonucleic acid [RNA], genes, or gene products) for the purposes of:

- Diagnosing disease.
- Assisting in treatment decisions.
- Early identification of and intervention to control rejection.
- Predicting future disease, identifying carriers of disease, or prenatal testing.

Heartsbreath test is used for diagnosing grade 3 rejections. It detects markers of oxidative stress, which may predict rejection. Mycophenolic acid (MPA) is an immunosuppressant drug used to prevent rejection of solid organ transplants (including hearts). Monitoring MPA has the objective of improving control over acute rejection and is based on observed associations (i.e., hypothesis-generating rather than -testing studies) between MPA pharmacokinetics and rejection in adults and children.

Searches

AmeriHealth Caritas Pennsylvania searched PubMed and the databases of:
- UK National Health Services Center for Reviews and Dissemination.
- Agency for Healthcare Research and Quality’s National Guideline Clearinghouse and other evidence-based practice centers.
- The Centers for Medicare & Medicaid Services (CMS).
We conducted searches on July 26, 2017. Search terms were: "heart transplant (MeSH)", "rejection (MeSH)", and "allograft (MeSH)."

We included:

- **Systematic reviews**, which pool results from multiple studies to achieve larger sample sizes and greater precision of effect estimation than in smaller primary studies. Systematic reviews use predetermined transparent methods to minimize bias, effectively treating the review as a scientific endeavor, and are thus rated highest in evidence-grading hierarchies.
- **Guidelines based on systematic reviews.**
- **Economic analyses**, such as cost-effectiveness, and benefit or utility studies (but not simple cost studies), reporting both costs and outcomes — sometimes referred to as efficiency studies — which also rank near the top of evidence hierarchies.

Findings

Lipschultz (2014) reviewed clinical success in identifying limitations in solid-organ transplant-related issues. In terms of antibody-mediated rejection (AMR), an area requiring further attention is the allograft injury caused by the binding of C1q to donor specific antibodies (DSAs). The authors postulated that therapies that target C1q can help prevent chronic allograft injury.

Chruscinski (2016) piloted a microarray technique and compared pre-transplant sera from 24 heart failure patients who subsequently received heart transplants. The authors identified eight antibody reactivities that were higher in patients who developed cellular rejection (two or more episodes of significant rejection in first year after transplant as defined by revised criteria from the International Society for Heart and Lung Transplantation) compared with those who did have not have rejection episodes. In a second retrospective study with 31 patients, seven IgM reactivities were identified that were higher in heart transplant recipients who developed antibody-mediated rejection (AMR) compared with control recipients, and in time course studies, these reactivities appeared prior to overt graft dysfunction. The technique demonstrated improved sensitivity compared to traditional methods and suggests that this autoantibody array technology may help identify patients at risk of rejection following heart transplantation and identify heart transplant recipients with AMR.

Policy updates:

A narrative review (Daly 2015) noted that heart transplantation is associated with high rates of overall survival in children with end-stage heart failure (ESHF). A pediatric heart donation priority list in Britain relies on ABO screening so that the most severely afflicted infants and children may be prioritized to earlier therapeutic intervention. The review also identifies factors that complicate and contribute to failure in pediatric heart transplantation, including allosensitization. The authors emphasize the usefulness of biomarkers to detect acute cellular rejection and cardiac allograft vasculopathy (e.g., VEGF-A).
Summary of clinical evidence:

<table>
<thead>
<tr>
<th>Citation</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chruscinski (2016)
Generation of antigen microarrays to screen for autoantibodies in heart failure and heart transplantation</td>
<td>Key points:
- Narrative review of a new test for autoantibodies after heart transplantation.
- The authors proposed a custom antigen microarray technique that can simultaneously measure IgM and IgG reactivities against 64 unique antigens using just five microliters of patient serum.
- There is evidence that these autoantibodies contribute to cardiac dysfunction and correlate with clinical outcomes.
- The technique displayed enhanced sensitivity to detect autoantibodies compared to the traditional ELISA method.</td>
</tr>
<tr>
<td>Daly (2015)
Emerging science in paediatric heart transplantation: donor allocation, biomarkers, and the quest for evidence-based medicine.</td>
<td>Key points:
- Narrative review opines that heart transplantation has been so successful that the number of potential recipients continues to exceed the number of available donors.
- Developing strategies to safely increase donor utilization is crucial to decreasing wait-list mortality.
- A new pediatric heart allocation policy is set to be implemented with the goal of prioritizing the most urgent listed candidates.
- Biomarkers for acute cellular rejection, such as donor-specific cell-free DNA, and cardiac allograft vasculopathy, such as VEGF-A, may lead to a decreased need for invasive...</td>
</tr>
<tr>
<td>Lipschultz (2014)
Issues in solid organ transplantation in children: translational research from bench to bedside</td>
<td>Key points:
- Reviewed clinical success in solid-organ transplant-related issues.
- In terms of AMR, an area requiring further attention is the allograft injury caused by the binding of C1q to DSAs.
- Suggested that therapies targeting C1q can help prevent chronic allograft injury.</td>
</tr>
<tr>
<td>Andalusian Agency for Health Technology Assessment (2012)
AlloMap genetic test for cardiac transplant rejection</td>
<td>Key points:
- Included: two evidence reports.
 - Four diagnostic accuracy studies.
 - One clinical trial.
 - One simple cost study; adequate/high methodologic quality.
- Diagnostic accuracy: sensitivity, 71% – 100%; specificity, 42% – 79%; positive predictive value, 1.3 – 3.6; negative, 0 – 0.58.
- Accuracy indicates best used for ruling out disease.
- Clinical trial: NS difference in rejection risk during 19-month follow-up.</td>
</tr>
<tr>
<td>Source</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Blue Cross Blue Shield Technology Evaluation Center (2011) | Gene expression profiling as a noninvasive method to monitor for cardiac allograft rejection | - Validation studies conducted in non-representative small samples with low-grade rejection.
- English-language test performance studies, September 2011.
- Accuracy: sensitivity, 76% – 84% (cutoff score 20); specificity, 38% – 41% (20).
- Post-hoc analyses (six and 12 months after transplant: Se, 71.4 – 80. Sp, 77.8 – 78.7.
- One RCT (Pham 2010) compared outcomes (AlloMap versus biopsy): two-year composite outcome similar in both groups; fewer biopsies in AlloMap group, but detection of asymptomatic rejection higher in biopsy group; composite outcome may not be sensitive to differences in treated rejection episodes.
- Conclusion: meets TEC criteria, final regulatory approval; improvement to net health |
| Hayes (2011) | AlloMap molecular expression (XDx Inc.) for detection of heart transplant rejection | - Alternate to endomyocardial biopsy.
- Under investigation. |
- 602 patients ≥ 18 years transplanted ≥ 6 months to 5 years: 1:1 ratio assignment
- with stratification by treatment center and interval since transplant (≤ 1 year
- 2-3.4-5).
- Surveillance by protocols at treatment centers and all patients also received clinical and echocardiographic assessments.
- Sponsored by test manufacturer.
- First occurrence of rejection with hemodynamic compromise, graft dysfunction due to other causes, death, or re-transplantation (primary).
- Death from any cause, number of biopsies performed, and biopsy-related complications (secondary).
- Quality of life and satisfaction with method of monitoring (SF-12).
- Baseline characteristics of groups well-matched except for higher proportion of blacks in biopsy.
- During median follow-up of 19 months: AlloMap and biopsy groups had similar outcomes. |
- Until there is more evidence, stakeholders should decide on case-by-case basis whether possible but uncertain benefits are worth extra time and expense. |
Detection of heart transplant rejection in adults by echocardiographic diastolic indices: a systematic review of the literature

Key points:
- Indices evaluated: mitral inflow velocities (early and late diastolic wave peak velocities, pressure half time, and isovolumetric relaxation time).
- Evidence currently available limited to diagnostic accuracy and does not support use.

References

Professional Society Guidelines

Carbaliddo FM, Llanos Méndez A. *AlloMap genetic test for cardiac transplant rejection*. Seville, Spain: Andalusian Agency for Health Technology Assessment (AETSA); 2012.

Gene expression profiling as a noninvasive method to monitor for cardiac allograft rejection. Chicago, IL: BlueCross BlueShield Technology Evaluation Center; 2011.

Peer-Reviewed References

CMS National Coverage Determination (NCDs):

No NCDs identified as of the writing of this policy.

Local Coverage Determinations

No LCDs identified as of the writing of this policy.

Commonly Submitted Codes:

Below are the most commonly submitted codes for the service(s)/item(s) subject to this policy. This is not an exhaustive list of codes. Providers are expected to consult the appropriate coding manuals and bill in accordance with those manuals.

<table>
<thead>
<tr>
<th>CPT Code</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0085T</td>
<td>Heartsbreath</td>
<td></td>
</tr>
<tr>
<td>80180</td>
<td>Mycophenolate (mycophenolic acid)</td>
<td></td>
</tr>
<tr>
<td>81595</td>
<td>Cardiology (heart transplant), mRNA, gene expression profiling by real-time quantitative PCR of 20 genes (11 content and 9 housekeeping), utilizing subfraction of peripheral blood, algorithm reported as a rejection risk score</td>
<td></td>
</tr>
<tr>
<td>93306</td>
<td>Echocardiography, transthoracic, real-time with image documentation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICD-10 Code</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T86.20</td>
<td>Unspecified complication of heart transplant</td>
<td></td>
</tr>
<tr>
<td>T86.21</td>
<td>Heart transplant rejection</td>
<td></td>
</tr>
<tr>
<td>T86.22</td>
<td>Heart transplant failure</td>
<td></td>
</tr>
<tr>
<td>T86.23</td>
<td>Heart transplant infection</td>
<td></td>
</tr>
<tr>
<td>T86.290</td>
<td>Cardiac allograft vasculopathy</td>
<td></td>
</tr>
<tr>
<td>T86.298</td>
<td>Other complications of heart transplant</td>
<td></td>
</tr>
<tr>
<td>T86.30</td>
<td>Unspecified complication of heart-lung transplant</td>
<td></td>
</tr>
<tr>
<td>T86.31</td>
<td>Heart-lung transplant rejection</td>
<td></td>
</tr>
<tr>
<td>T86.32</td>
<td>Heart-lung transplant failure</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>T86.33</td>
<td>Heart-lung transplant infection</td>
<td></td>
</tr>
<tr>
<td>T86.39</td>
<td>Other complications of heart-lung transplant</td>
<td></td>
</tr>
<tr>
<td>Z48.21</td>
<td>Encounter for aftercare following heart transplant</td>
<td></td>
</tr>
<tr>
<td>Z48.280</td>
<td>Encounter for aftercare following heart-lung transplant</td>
<td></td>
</tr>
<tr>
<td>Z94.1</td>
<td>Heart transplant status</td>
<td></td>
</tr>
<tr>
<td>Z94.3</td>
<td>Heart and lungs transplant status</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS Level II</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>